Raman Spectroscopy Vibrational Analysis of Octahedrally Coordinated Fluorides: Application to Transition Metal Fluoride Glasses

B. BOULARD AND C. JACOBONI

Laboratoire des Fluorures, UA CNRS 449, Faculté des Sciences, Université du Maine, 72017 Le Mans Cedex, France

AND M. ROUSSEAU

Laboratoire de Physique de l'Etat Condensé, UA CNRS 807, Faculté des Sciences, Université du Maine, 72017 Le Mans Cedex, France

Received August 29, 1988; in revised form January 27, 1989

An extensive Raman investigation of octahedrally coordinated single-crystal fluorides have been performed. The theoretical study of these phases, using group theory, gives the evidence of close relationship between metal oxidation number, connection schemes, and spectra features. The results of this study, when applied to the case of transition metal fluoride glasses, propose these glasses to be built up with octahedral entities predominantly linked by corners to form one-dimensional networks. © 1989 Academic Press, Inc.

Introduction

Fluoride glasses belong to a new class of materials with high potentiality for fiber optics because of their ultra transparency in the middle infrared and a very low estimated loss value (about 10^{-3} dB/km at 2.55 μ m) (1, 2).

Three-dimensional (3d) transition metal fluoride glasses (TMFG) have been extensively investigated in various fields (X-ray and neutron diffraction (3-5); EXAFS (6, 7), NMR (8), magnetism (9)) to get coherent crystal chemistry knowledge.

Raman spectroscopy seems to be another way to access the structure of these materials. With a large number of single crystals of octahedrally coordinated 3d transition metals in various known structural types we looked at correlations between the vibration modes and the oxidation number and/or the connection scheme. These data were used to interpret the Raman spectra of the fluoride glasses (TMFG) which contain the same entities.

I. Experimental Procedures

1. Sample Preparations

Crystalline samples were obtained either from a chloride flux method (10) (Na₅Al₃ F_{14} , Cs₂NaAl₃ F_{12} , Rb₂CrF₅, CoF₂, MnF₂, NaMnCrF₆, β -AlF₃, K₂NaGaF₆) or HF hydrothermal synthesis (11) ((NH₄)₃AlF₆, Tl₂ AlF₅ · H₂O, TlAlF₄, KAlF₄, β -RbAlF₄).

Bulk glass samples are prepared as already described (12) (by melting the mixture of anhydrous fluorides in a platinum crucible; the melt is quenched on a preheated brass mold); they are then polished with OH^- free solvent.

2. Raman Measurements

Raman spectra were recorded with a DILOR Z24 spectrometer (triple monochromator, photon counting electronics); 514.5- and 457.9-nm lines of an Argon-ion laser (Coherent INOVA 90) have been used as the excitation source.

Single-crystal Raman spectra were recorded under a microscope (ULF \times 50 objective) from 20 to 600 cm⁻¹ with 700- μ m slit width. Although imperfectly defined under the microscope, polarization effects may be qualitatively taken into account. The intensities of all the Raman spectra are given with arbitrary units; a typical polarized Raman spectrum is shown in Fig. 1.

The measurements for TMFG were carried out on large polished samples in the 90° scattering configuration in both the polarized H–H configuration (the scattered light is analyzed for electric vector parallel to that of the incident radiation) and the H-Vconfiguration (electric vector perpendicular to incident light).

II. Vibrational Study of Crystalline Fluorides

1. Crystal Structures of Studied Phases

The most important features of their crystal chemistry are described in the following lines.

(a) Isolated octahedra. The Fm3m cubic structure of $(NH_4)_3AlF_6$ (13) or elpasolite, K_2NaGaF_6 (14), is shown in Fig. 2.

(b) One-dimensional network structures. Two examples of structures built up from isolated chains of corner-shared octahedra $(Tl_2AIF_5 \cdot H_2O \ (15) \ trans-chains and Rb_2 \ CrF_5 \ (16) \ cis-chains)$ are shown in Figs. 3 and 4, respectively.

(c) Two-dimensional network structures. In the fluoroaluminate case, we can distinguish two kinds of $(AlF_4)_n$ layers:

FIG. 1. Polarized Raman spectrum of Rb₂CrF₅.

FIG. 2. Fm3m structure of (NH₄)₃AlF₆.

-tetragonal as in TlAlF₄ (17) (Fig. 5) with its isotypes KAlF₄ (17) and β -RbAlF₄ (18), or in Na₅Al₃F₁₄ (19) (Fig. 6);

—hexagonal as in hexagonal tungsten bronze (H.T.B.)-type $Cs_2NaAl_3F_{12}$ (20) (Fig. 7).

(d) Tridimensional structures. Various structural types were studied:

—The rutile structure has edge-shared chains of octahedra linked together by corners as in CoF_2 , MnF_2 (21) (Fig. 8).

—The H.T.B.-type β -AlF₃ (22) is shown in Fig. 9.

FIG. 3. Structure of $Rb_2AlF_5 \cdot H_2O$. The octahedra are *trans*-connected. \bigcirc , H_2O molecules.

FIG. 4. Structure of Rb_2CrF_5 ; the octahedra are *cis*-connected.

—The NaMnCrF₆ (23) structure (Fig. 10) has octahedra linked by corners and by edges with two different oxidation number cations (Mn^{2+} and Cr^{3+}).

2. Discussion

(1) Evidence of pure symmetric stretching (SS). Raman spectroscopic studies performed on $AAIF_4$ (A = K, Rb, Cs, NH₄) compounds show that the A_{1g} band (VV polarized) of the Raman active vibrations of AIF_{6}^{-} octahedron lies in the range

FIG. 5. Structure of TlAlF₄.

FIG. 6. Structure of $Na_3Al_3F_{14}$ showing $[Al_3F_{14}]_n^{5n-1}$ sheets.

515–545 cm⁻¹. Lattice dynamics calculations unambiguously show that this band is assigned to the symmetric stretching (SS) of the nonbridging F atoms F_{nb} (24, 25); it is

FIG. 7. Structure of $Cs_2NaAl_3F_{12}$; Al atoms form triangular and hexagonal rings.

FIG. 8. Rutile structure.

the case for crystals with isolated octahedra or mono and bidimensional networks.

Figure 11 shows the Raman spectra obtained for K_2NaGaF_6 , $Tl_2AlF_5 \cdot H_2O$, and $Cs_2NaAl_3F_{12}$.

According to Rousseau *et al.* (26), when neglecting F-F interactions, the harmonic force constant associated with the motion of F atoms in the M-F direction of MF_6 octahedron may be written in the form

$$K_{\rm F\parallel} = \frac{e^2}{16r^3} (2A_2 - \alpha Z_{\rm M} Z_{\rm F}),$$
 (1)

where $Z_{\rm M}$ and $Z_{\rm F}$ are the formal ionic charge of respective ions, r is their distance, A_2 is a parameter characteristic of the *M*-F short-range interaction, and α is a geometric constant.

FIG. 9. Structure of β -AlF₃.

FIG. 10. Structure of NaMnCrF₆. CrF_6 and MnF_6 share both edges and corners.

Furthermore, the minimization of the total energy provides a relation between A_2 and the ionic charges: $A_2 \propto Z_M Z_F$. Thus, the harmonic force constant is proportional to $Z_M Z_F$ and r^{-3} . The frequency of the SS vibration may be expressed by

$$\omega_{\rm SS}^2 = \frac{K \cdot e^2 \cdot Z_{\rm M} Z_{\rm F}}{m_{\rm F} r^3} \tag{2}$$

When neglecting the r^{-3} dependence ω_{SS} is roughly proportional to $Z_M^{1/2}$. As previously outlined 520 cm⁻¹ is the order of magnitude of ω_{SS} for F_{nb} vibrations in MF_6 octahedra for M^{3+} ions ($Z_M = 3$). Then, we can estimate ω_{SS} as 600 and 420 cm⁻¹ for MF_6 octahedra with M^{4+} and M^{2+} ions, respectively.

TABLE I

Observed Vibration Frequency and Mean *M*-F Distance (X-Ray Data)

Cation	Crystal	Frequency (cm ⁻¹)	<i>М</i> –F (Å)	Octahedral network
Zr ⁴⁺	$Li_2ZrF_6(27)$	585	2.016	Isolated
	Cs ₂ ZrF ₆ (27)	577	2.112	Isolated
Ga ³⁺	K2NaGaF6	558	1.940	Isolated
A13+	(NH4)3AIF6	546	1.900	Isolated
	K-AlF · H-O	536	1.908	One dim.
	Rb2AlF4 H2O	530	1.908	One dim.
	TI-AIF · H2O	516	1.908	One dim.
	Cs-NaAl ₃ F ₁₂	536	1.801	Two dim.
	Na ₃ Al ₃ F ₁₄	534	1.790	Two dim.
	TIAIF	520	1.784	Two dim.
	KAIF	545	1.784	Two dim.
	B-RbAIF	528	1.808	Two dim.
Cr ³⁺	Na ₅ Cr ₃ F ₁₄	544	1.840	Two dim.

In fact, as shown in Table I, strong A_{1g} bands are observed in the predicted frequency range for many compounds built with MF_6 octahedra on M^{4+} and M^{3+} ions.

The last approximation allows us to identify one of the totally symmetric Raman lines as corresponding to SS of MF_6 octahedra.

In order to go further we reported in Fig. 12 $\Gamma = \omega_{\rm SS} \cdot r^{3/2} \cdot Z_{\rm M}^{-1/2}$ as a function of the degree of connectivity between the octahedra. Figure 12 clearly shows that ω_{ss} increases when the degree of connectivity decreases. This variation may be attributed to modifications of F-F short-range interactions. Effectively, in two-dimensionally connected octahedra the "SS" vibration involves only two nonbridging F_{nb} atoms; on the other hand, in-phase motion of four F_{nh} atoms occurs in compounds with one-dimensionally connected octahedra. As illustrated in Fig. 13, the correlated motion of F_{nb} atoms enhances the F-F interatomic distance variations leading to an increase of the short-range F-F force constant. This effect is doubled in the case of isolated octahedra where 6 F_{nb} atoms are moving simultaneously.

The motion of both M^{3+} and F^- ions in stretching mode should lead to higher frequencies: the reduced mass $1/m_F$ in Eq. (2) is replaced by $1/m_F + 1/m_{Cr}$ in the Rb₂CrF₅ case; the group theory shows that the A_g modes (D_{2h}) involve motion of both Cr³⁺ and F⁻ ions; the observed frequency (584 cm⁻¹) is consistent with precedent remarks.

Apart from the SS mode involving nonbridging F_{nb} atoms (noted v^{S} in Almeida's work (28)), there exists a symmetric bending (SB) mode involving motion of bridging fluorine atoms F_{b} (noted ω_{SS} in the same work) (Fig. 14). According to Almeida, the frequency ω_{SB} of the SB vibration of F_{b} atoms is related to the frequency ω_{SS} of F_{nb} atoms by

$$\omega_{\rm SB}^2 = 2 \cdot \omega_{\rm SS}^2 \cdot \cos^2 \theta/2. \tag{3}$$

This last expression has been derived using nearest-neighbor central forces between Mand F atoms; in fact, when plotting ω versus cos $\theta/2$ for various compounds (respectively $Tl_2AlF_5 \cdot H_2O$, $K_2AlF_5 \cdot H_2O$, Rb_2 AlF₅·H₂O, Na₅Al₃F₁₄, β -AlF₃, and Cs₂Na Al₃F₁₂, Fig. 15) with small variations of Al-F distances ($\Delta r/r < 0.5\%$), it appears that

FIG. 11. Polarized Raman spectra of K₂NaGaF₆ (a), Tl₂AlF₅ · H₂O (b), and Cs₂NaAl₃F₁₂ (c).

FIG. 11-Continued

the following law is much more realistic.

$$\omega_{\rm SB} = A + B \cdot \cos \theta/2, \qquad (4)$$

where A characterizes interactions other than M-F ones and B is estimated to be 514 cm⁻¹. The difference between B and $\omega_{\rm SS} \sqrt{2}$ (735 cm⁻¹) gives an order of magnitude of the contribution of noncentral forces. It is noteworthy that A represents the symmetric bending frequency in the case of $\theta = 180^{\circ}$. This situation occurs in the high-temperature phase of RbAlF₄ where, according to Bulou (29), the corresponding X_7^2 zone boundary mode is observed at 256 cm⁻¹ in agreement with the

FIG. 12. Variation of connecting scheme criterion $\Gamma = r^{3/2}\omega/\sqrt{q}$ with degree of connectivity.

FIG. 13. F^- motion in SS A_{1g} mode for isolated octahedra, one-dimensional and bidimensional networks. When more F^- anions are involved, F-F short-range interactions increase leading to a higher symmetric stretching frequency ω_{SS} .

FIG. 14. Schematic illustration of the symmetric bending SB vibration of bridging fluorine atom F_b .

232 cm⁻¹ extrapolated from our measurements.

(2) Case of tridimensional structures. All of the previously mentioned crystals display a symmetric stretching A_{1g} Raman line involving elongation of M-F_{nb} bonds. The frequency of this SS mode depends mainly on the oxidation number of metal M and on the degree of connectivity of the MF_6 octahedra. The interpretation of this particular line was justified by both lattice dynamics calculation and symmetry determination (25) of the Brillouin zone center normal mode with group theory. In the case of tridimensional networks (without F_{nb}), each structure has to be seen as a special case. Figure 16 shows the Raman spectra of CoF_2 , β -AlF₃, and NaMnCrF₆:

(1) In the two AlF₃ forms, symmetry does not allow any Raman-active SS modes of M-F bonds; as expected, the characteristic SS line is not found.

(2) The rutile structure (MnF₂, CoF₂) is built with both corner and edge sharing of MF_6 octahedra; nevertheless, as shown in Table II, the observed frequencies for A_{1g} mode are in the same range as the ω_{SS} value.

(3) The NaMnCrF₆ spectrum shows three lines at 572, 538, and 358 cm⁻¹; the first two lines are consistent with the existence of two different crystallographic sites for Cr³⁺. One Cr₁ (2d) participates in the A_{1g} vibration mode, giving a higher vibration at 572 cm⁻¹ (this case is to be compared to the case of Rb₂CrF₅); the other Cr₂ (1a) has no active Raman mode: the 538 cm⁻¹ line can be attributed to the ω_{SS} vibration mode.

Since NaMnCrF₆ has a three-dimensional network involving Cr-F-Mn junctions, we could have expected the ω_{SS} vibration to be perturbed by Mn²⁺; this effect

FIG. 15. Variation of symmetric bending mode frequency ω_{SB} versus $\cos \theta/2$, where θ is the M-F-M angle defined in Fig. 14.

TABLE II

Observed Vibration Frequency for the A_{1g} Mode and Mean M-F Distance (X-Ray Data)

Cation	Crystal	Frequency (cm ⁻¹)	<i>М</i> -F (Å)	
Cr ³⁺	NaMnCrF ₆	538-572	1.909	
Mn ²⁺	NaMnCrF ₆ MnF ₂	358 338	2.130	
Co ²⁺	CoF ₂	364	2.076	

is not observed. The 538 cm⁻¹ frequency very well agrees with values found in Table I. We explain this result by easily distorted MnF_6 octahedra; the distortion is consistent with the known behavior of M^{2+} ions as connecting agents in fluoride glass systems.

The 358 cm⁻¹ line corresponds both to M^{II} -F (ω_{SS}) vibration and to M^{III} F₆ distortion (24, 25) because of the edge sharing of M^{II} F₆ and M^{III} F₆ octahedra. Table III compares observed and calculated frequencies of symmetric bending modes ω_{SB} , using an expression derived from Eq. (3):

$$\omega_{\rm SB}^2 = [\omega_{\rm SS}^2(M^{\rm II}) + \omega_{\rm SS}^2(M^{\rm III})]/\cos^2\theta/2.$$
 (5)

A fairly good agreement is found for Mn– F–Cr bending where octahedra share corners (262/258), this is not the case when octahedra share edges (404/358): either Eq. (2) is not valid for this particular configuration or edge Mn–F–Cr vibration does not occur.

TABLE III

Comparison of Observed and Calculated Frequencies of Symmetric Bending Modes ω_{SB}

Crystal	Bond	θ (°)	ω_{calc} (cm ⁻¹)	ω _{obs} (cm ⁻¹)
$\frac{\text{NaMnCrF}_6}{\omega_{\text{Mn}} = 358 \text{ cm}^{-1}}$	Mn-F-Cr	132.1	262	258
$\omega_{\rm Cr} = 538 \ \rm cm^{-1}$	Mn F Cr	103.1 102.2	404	358

III. Raman Data on Disordered Phases or Glasses

1. The RbNiCrF₆-type Pyrochlores

In the case of pyrochlore structure (CsZn GaF₆, (30)), all fluorine atoms are bounded either to ZnF₆ or GaF₆ octahedra (statistically disordered—Figs. 17 and 18, Table IV). Application of group theory shows that in the Fd3m space group, vibrations along the M-F bond are forbidden.

Two interpretations of the spectrum are possible, but both are inconsistent with the space group Fd3m:

—The statistical partition of Zn and Ga on the same site must result in many Zn–F– Ga connections in contradiction with the higher value found at 604 cm⁻¹ (broad line) compared to 538 cm⁻¹ for ω_{Cr} in NaMn CrF₆. The broadening of the line could indicate both the cationic disorder and a notable amount of Ga–F–Ga connections.

—The 604 cm⁻¹ vibration is a ω_{SS} vibration indicating that the *Fd3m* space group is wrong as suggested by a previous EXAFS study (31). The lack of translational symmetry modifies the selection rules, allowing activity for normally forbidden modes.

2. Three-Dimensional Transition Metal Fluoride Glasses

The "statistical" cationic distribution in the 16c site of $CsZnGaF_6$ pyrochlore structure is probably a situation not far from that which exists in 3d transitional element

TABLE IV Comparison of Observed and Calculated Frequencies for Bending Modes

Crystal	Bond	θ (°)	ω_{calc} (cm ⁻¹)	ω _{obs} (cm ⁻¹)
CsZnGaF6	Ga-F-Ga	149.1	369	385
$\omega_{Ga} = 530 \text{ cm}^{-1a}$ $\omega_{Zn} = 360 \text{ cm}^{-1}$	Ga-F-Zn Zn-F-Zn	137.8 129.5	231 220	210

^a Estimated from $r^{3/2} \cdot \omega = f(\sqrt{Z_m})$ curve.

fluoride glasses. Their structure can be described in two ways:

 $-Mt^{II}F_6$ and $Mt^{III}F_6$ octahedra are linked

together essentially by corners but the

 $Mt^{II}F_6$ octahedra are more connected than the $Mt^{III}F_6$ octahedra; large cations (Pb²⁺, Ba²⁺...) occupy the large holes of the tridimensional octahedral network very close to that of lacunary ReO₃ type.

FIG. 16. Polarized spectra of CoF_2 , β -AlF₃, and NaMnCrF₆.

—Three-dimensional transition metals fit the octahedral sites of a quasi-compact fluoride ion packing; the perturbation in the network is due to the insertion of the large cations (Pb^{2+} , Ba^{2+} ..., same size as F^{-}) in the F^{-} packing.

FIG. 17. Structure of RbNiCrF₆-type pyrochlore.

Figure 19 shows the average structure of TMFG.

Bose-Einstein (32) corrected Raman spectra of TMFG containing only M^{III} ions (Glass A) or M^{II} ions (Glass B) and both M^{II} and M^{III} ions (Glasses C and D) in sixfold coordination (from previous structural studies) are shown in Fig. 20. Glasses A, C, and D exhibit a narrow V-V polarized line in the range 500-600 cm⁻¹:

—The replacement of MnF_2 with ZnF_2 (Glasses C, D) does not affect the 560 cm⁻¹ line leading us to the conclusion that this line is due to M^{III} —F stretching.

--We tried to compare the width (HWHM) of both this Raman line and the EXAFS radial distribution functions (RDF, (6)) in the case of the same glass (Glass D). Assuming again that the ω_{SS} frequency can be written as: constant $\cdot r^{-3/2}$, we can see that $\Delta\omega/\omega = 3/2 \Delta r/r$; this leads to $\Delta r = 0.085$ Å (very close to the EXAFS value $\Delta r = 0.08$ Å).

FIG. 18. Polarized Raman spectrum of CsZnGaF₆.

—This well-defined line, attributed to $M^{\rm III}$ cations, when associated with the broadened contributions of Pb²⁺ and M^{2+} in the low frequency range confirms that in these glasses the short-range order depends upon $M^{\rm III}$ F₆ octahedra, while Pb²⁺ and M^{2+} could have the classical modifier behavior.

The comparison of variation of connecting scheme dependent criterion $\Gamma = r^{3/2} \cdot \omega/\sqrt{q}$ with the glass composition (Table V) leads to conclusions, consistent with the known structural models:

-Glass A ($\Delta r = 0.086$ Å). The molar composition ratio In/(Pb + Ba) ≈ 1 implies the predominance of InF₆ species and the possible existence of In-F-In connections; the Γ value is in favor of a monodimensional network.

-Glass B ($\Delta r = 0.16$ Å). This glass (more unstable), contains only $M^{11}F_6$ enti-

FIG. 19. Structural model for TMFG network: \bullet , M^{2+} ; \bigcirc , M^{3+} .

TABLE V Variation of $\Gamma = r^{3/2} \cdot \omega/\sqrt{q}$ with Glass Composition

Glass	Composition	ω_{SS} (cm ⁻¹)	<i>r(M</i> -F) (Å)	Г
A	19.0PbF2-23.8BaF2-47.6InF3	500	2.02	829
	1.9AlF ₃ -4.9SrF ₂ -2.8YF ₃			
В	$20BaF_2 - 50ZnF_2 - 30YF_3$	410	2.01 ^a	826
С	35.3PbF ₂ -23.5MnF ₂ -34.3GaF ₃ 2.0AlF ₃ -4.9YF ₃	560	1.90ª	847
D	35.3PbF ₂ -23.5ZnF ₂ -34.3GaF ₃ 2.0AlF ₃ -4.9YF ₃	560	1.90 ^a	847

^a EXAFS results.

ties; the ω_{ss} line found at 410 cm⁻¹ is large, indicative of the octahedra's distortion. The value of Zn/(Ba + Y), related to the Γ value, predicts a situation analogous to that of Glass A. --Glass C, D ($\Delta r = 0.085$ Å). According to the lower value of ratio Ga/(Pb + M^{II}), it can be expected that Ga-F- M^{II} connections become predominant; the Γ value indicates mostly isolated or "pseudo"-iso-

FIG. 20. V-V and V-H Bose-Einstein corrected spectra of glasses A, B, C, and D. (For glass composition refer to Table V.)

lated $M^{III}F_6$ octahedra. We already noticed tent with the model of alternated Ga- M^{II}

that in NaMnCrF₆, Mn has no effect on M^{III} -F ω_{SS} vibration. This view is consis- we cannot exclude the existence of the

Ga-F-Ga connection since the 604 cm^{-1} frequency found in the pyrochlore is similar to that value.

IV. Conclusion

Raman spectra recording of small crystals (down to 0.1 mm) was made possible thanks to a micro-Raman spectrometer. Study of single crystals of octahedrally coordinated fluorides has shown that the symmetric stretching frequency ω_{SS} mainly depends on the oxidation number of the metal and then on the degree of connectivity; but the case of three-dimensional structures is more complex.

TMFG study shows unambiguously that the less-distorted octahedra are $M^{III}F_6$, with predominance of the ω_{SS} vibration of M^{III} -F bonds. The short-range order is mainly due to trivalent metal octahedra; the structural view is consistent with that given previously by other studies.

Acknowledgments

We thank G. Courbion and J. L. Fourquet for providing us with some of the single crystals and A. Bulou for helpful discussions.

References

- R. M. ALMEIDA (Ed.), VILAMOURA, NATO ASI Ser. E: Appl. Sci. 123 (1986).
- M. MONERIE, New Materials for Optical Waveguides, SPIE, Vol. 799, pp. 123-130 (1987).
- 3. A. LE BAIL, C. JACOBONI, AND R. DE PAPE, J. Solid State Chem. 48, 168–175 (1983).
- 4. A. LE BAIL, C. JACOBONI, AND R. DE PAPE, J. Non-Cryst. Solids 74, 205-212 (1985).
- 5. A. LE BAIL, C. JACOBONI, AND R. DE PAPE, *Mater. Sci. Forum* 6, 441-448 (1985).
- 6. A. LE BAIL, C. JACOBONI, AND R. DE PAPE, J. Solid State Chem. 52, 32-44 (1984).
- G. COURBION, J. GUERY, A. LE BAIL, AND C. JACOBONI, Mater. Sci. Forum 6, 739-742 (1985).
- C. DUPAS, K. LE DANG, J. P. RENARD, P. VEILLET, J. P. MIRANDAY, AND C. JACOBONI, J. Phys. 42, 1345-1350 (1981).

- 9. J. P. RENARD, J. P. MIRANDAY, AND F. VARRET, Solid State Commun. 35, 41-44 (1980).
- 10. J. NOUET, C. JACOBONI, G. FEREY, J. Y. GERARD, AND R. DE PAPE, J. Cryst. Growth 8, 94–98 (1970).
- 11. M. LEBLANC, G. FEREY, AND R. DE PAPE, Mater. Res. Bull. 19, 1581-1590 (1984).
- N. AURIAULT, J. GUERY, A. M. MERCIER, C. JACOBONI, AND R. DE PAPE, *Mater. Res. Bull.* 20, 309-314 (1985).
- 13. A. LEBLE, J. C. FAYET, AND C. JACOBONI, C. R. Acad. Sci. **T277**, 647–650 (1973).
- 14. K. KNOX AND D. W. MITCHELL, J. Inorg. Nucl. Chem. 21, 253 (1961).
- 15. J. L. FOURQUET, F. PLET, AND R. DE PAPE, *Rev. Chim. Miner.* 18, 19–26 (1981).
- C. JACOBONI, R. DE PAPE, M. POULAIN, J. Y. LE MAROUILLE, AND D. GRANDJEAN, Acta Crystallogr. Sect. B 30, 2688 (1974).
- 17. J. L. FOURQUET, F. PLET, G. COURBION, AND R. DE PAPE, Rev. Chim. Miner. 16, 490-500 (1979).
- 18. J. L. FOURQUET, F. PLET, AND R. DE PAPE, Acta Crystallogr. Sect. B 36, 1997-2000 (1980).
- 19. C. JACOBONI, A. LEBLE, AND J. J. ROUSSEAU, J. Solid State Chem. 36, 297–304 (1981).
- 20. G. COURBION, C. JACOBONI, AND R. DE PAPE, Acta Crystallogr. Sect. B 32, 3190-3193 (1976).
- R. W. G. WYCKOFF, "Crystal Structures," Vol. 1, p. 251, Interscience, New York (1965).
- A. LE BAIL, C. JACOBONI, M. LEBLANC, R. DE PAPE, H. DUROY, AND J. L. FOURQUET, J. Solid State Chem. 77, 96-101 (1988).
- 23. G. COURBION, C. JACOBONI, AND R. DE PAPE, Acta Crystallogr. Sect. B 33, 1405–1408 (1977).
- 24. A. BULOU, M. ROUSSEAU, J. NOUET, P. L. LOYZANCE, R. MOKHLISSE, AND M. COUZI, J. Phys. C: Solid State Phys. 16, 4527-4537 (1983).
- 25. A. BULOU, M. ROUSSEAU, J. NOUET, AND B. HENNION, submitted for publication.
- M. ROUSSEAU, J. Y. GESLAND, J. JUILLARD, J. NOUET, AND A. ZAREMBOVITCH *Phys. Rev. B* 12(4), 1579–1590 (1975).
- L. M. TOTH, A. S. QUIST, AND G. E. BOYD, J. Phys. Chem. 77, 11, 1384 (1973).
- R. M. ALMEIDA, J. Chem. Phys. 78, 11, 6502– 6511 (1983).
- 29. A. BULOU, Thèse de Doctorat d'Etat, Paris VI-Le Mans (1985).
- 30. D. BABEL, Z. Anorg. Allg. Chem. 387, 161 (1972).
- 31. A. LE BAIL, C. JACOBONI, AND R. DE PAPE, J. Solid State Chemistry 61, 188–196 (1986).
- 32. G. E. WALRAFEN, M. S. HOKMABADI, S. GUHA, AND P. N. KRISHNAN, J. Chem. Phys. 83, 4427– 4443 (1985).